【摘要】高等數(shù)學在數(shù)一中的考點分布相對數(shù)二、數(shù)三而言比較廣,并且出題的角度和方向也比較瑣屑,但是也并非無跡可尋,中公考研為大家分析了
作者
佚名
【摘要】高等數(shù)學在數(shù)一中的考點分布相對數(shù)二、數(shù)三而言比較廣,并且出題的角度和方向也比較瑣屑,但是也并非無跡可尋,為大家分析了一下在數(shù)一中高數(shù)的常考知識點。
數(shù)學在考研中的考試題型不外乎是定義題、計算題、證明題。下面我將具體為大家剖析高等數(shù)學各篇章在數(shù)一的考點。
極限
首先是極限。極限在數(shù)一中還是占著很大的比重,考試的只要考查方式就是求極限,還有就是一些單調(diào)有界定理的使用。我們要充分掌握求不定式極限的種種方法,比如利用極限的四則運算、利用洛必達法則等等,另外兩個重要的極限也是重點內(nèi)容;其次就是極限的應用,主要表現(xiàn)為連續(xù),導數(shù)等等,對函數(shù)的連續(xù)性和可導性的探討也是考試的重點,這要求我們直接從定義切入,充分理解函數(shù)連續(xù)的定義和掌握判定連續(xù)性的方法。
導數(shù)和微分
雖然導數(shù)是由極限定義的,然而真正在考試的過程中,我們求一個函數(shù)的導數(shù)時,我們并不會直接用定義去求,更多的是直接從求導公式中去求一個函數(shù)的導數(shù)。導數(shù)的考查方式主要還是和其它的知識點相結合,很少直接給你一個函數(shù)讓你求導數(shù)。例如不等式的證明,函數(shù)單調(diào)性,凹凸性的判斷,二元函數(shù)的偏微分等等。換句話說,導數(shù)是一個基礎。
中值定理
中值定理一般會兩年至少考一次,多是以證明題的方式出現(xiàn),而且常常和閉區(qū)間上的連續(xù)函數(shù)的性子相結合,以與羅爾定理為重點。
積分與不定積分
積分與不定積分是考試的重中之重,尤其是多元函數(shù)積分學更是每年的必考題型,平均一年會出兩道大題,而且定積分、分段函數(shù)的積分、帶絕對值的函數(shù)的積分等種種積分的求法都是重要的題型。而且求積分的過程中,特別要留意積分的對稱性,利用分段積分去掉絕對值把積分求出來。二重積分的計算,固然數(shù)學一里面還包括了三重積分,這里面每年都要考一個題目。
另外曲線和曲面積分,這也是必考的重點內(nèi)容。對于曲線積分和曲面積分,考查方式以格林公式和高斯公式的應用為主,大家一定要注意格林公式和高斯公式的使用條件,考試的過程中往往會在這里設置陷阱。這兩部分內(nèi)容相對比較零散,也是難點,需要記憶的公式、定理比較多。
微分方程
微分方程中需要熟練掌握變量可分散的方程、齊次微分方程和一階線性微分方程的求解方法,以及二階常系數(shù)線性微分方程的求解,對于這些方程要能夠判斷方程類型,利用對應的求解方法,求解公式,能很快的求解。對于無限級數(shù),要會判斷級數(shù)的斂散性,重點掌握冪級數(shù)的收斂半徑與收斂域的求解,以及求數(shù)項級數(shù)的和與冪級數(shù)的和函數(shù)等。
數(shù)學遠沒有大家想象中的那么難,只要大家充分掌握住這些重點,根據(jù)自己的情況有針對性的復習會到達很不錯的效果,并且在有限的時間內(nèi)復習數(shù)學,大家必須明確,在完成這個階段的復習之后,自己會到達一個什么樣的高度。相信經(jīng)過有計劃有目標的復習,每個同學都可以使自己的綜合解題能力有一個質(zhì)的提高,從而在最后的考試中考出好的成績。
專業(yè)課想沖刺一下?點擊這里,學長學姐等著你呢。
?。ㄎ沂菍嵙曅【幚钏圭?,知道你正在經(jīng)歷人生中的一次重要挑戰(zhàn),加油哦?。?/p>
關于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"有15名研友在考研幫APP發(fā)表了觀點
掃我下載考研幫
最新資料下載
2021考研熱門話題進入論壇
考研幫地方站更多
你可能會關心:
來考研幫提升效率