考研幫 > 數(shù)學(xué) > 復(fù)習(xí)經(jīng)驗

2016考研數(shù)學(xué):線代考情分析

  摘要:70%以上的學(xué)生認為線性代數(shù)試題難度低,容易取得高分,線性代數(shù)的得分率總體比高等數(shù)學(xué)和概率論高5%左右,而且線性代數(shù)側(cè)重的是方法的考查,考點比較明確,系統(tǒng)性更強。下面,小編就和大家分享一下線代的復(fù)習(xí)小技巧。

  ?考研數(shù)學(xué)線性代數(shù)相比較高等數(shù)學(xué)和概率論而言,呈現(xiàn)明顯不同的學(xué)科特點——概念多、定理多、符號多、運算規(guī)律多、內(nèi)容縱橫交錯以及知識點前后緊密聯(lián)系。如果說高等數(shù)學(xué)的知識點算“條”的話,那么概率論就應(yīng)該算“塊”,而線性代數(shù)就是“網(wǎng)”!具體來看,線性代數(shù)這整張網(wǎng),又是由行列式、矩陣、向量、線性方程組、特征值與特征向量以及二次型這6張小網(wǎng)相互交叉聯(lián)結(jié)而成。而其中向量和線性方程組這兩張網(wǎng)又在其中起著承前啟后、上下銜接的關(guān)鍵作用。

  通過上面的分析,大家是不是發(fā)現(xiàn)——向量和線性方程組是線性代數(shù)的重難點內(nèi)容,也是考研的重點和難點之一?這一點也可以從歷年真題的出題規(guī)律上得到驗證。

  關(guān)于第三章向量,無論是大題還是小題都特別容易出考題,06年以來每年都有一道考題,不是考察向量組的線性表示就是向量組的線性相關(guān)性的判斷,10年還考了一道向量組秩的問題。

  關(guān)于第四章線性方程組,06年以來只有11年沒有出大題,其他幾年的考題均是含參方程的求解或者是解的判定問題。

  考研數(shù)學(xué)線性代數(shù)暑期強化復(fù)習(xí)階段重點應(yīng)放在充分理解概念,掌握定理的條件、結(jié)論、應(yīng)用,熟悉符號意義,掌握各種運算規(guī)律、計算方法上,并及時進行總結(jié),抓聯(lián)系,使所學(xué)知識能融會貫通,舉一反三。

  ?向量—理解相關(guān)無關(guān)概念,靈活進行判定
  向量組的線性相關(guān)問題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點。如何掌握這部分內(nèi)容呢?首先在于對定義、性質(zhì)和定理的理解,然后就是分析判定的關(guān)鍵在于:看是否存在一組不全為零的實數(shù)。

  這部分題型有如下幾種:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個向量能否由一向量組線性表出、向量組的秩和極大無關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價的命題、與向量空間有關(guān)的命題(數(shù)一)。

  要判斷(證明)向量組的線性相關(guān)性(無關(guān)性),首先會考慮用定義法來做,其次會用向量組的線性相關(guān)性(無關(guān)性)的一些重要性質(zhì)和定理結(jié)合反證法來做。同時會考慮用向量組的線性相關(guān)性(無關(guān)性)與齊次線性方程組有非零解(只有零解)之間的聯(lián)系和用矩陣的秩與向量組的秩之間的聯(lián)系來做。

  ?線性方程組——解的結(jié)構(gòu)和(不)含參量線性方程組的求解
  要解決線性方程組解的結(jié)構(gòu)和求法的問題,首先應(yīng)考慮線性方程組的基礎(chǔ)解系,然后再利用基礎(chǔ)解系的線性無關(guān)性、與矩陣的秩之間的聯(lián)系等一些重要性質(zhì)來解決線性方程組解的結(jié)構(gòu)和含參量的線性方程組解的討論問題,同時用線性方程組解結(jié)構(gòu)的幾個重要性質(zhì)求解(不)含參量線性方程組的解。

  即使是多么令童鞋聞風(fēng)喪膽的數(shù)學(xué),其實都有一定的規(guī)律可循。通過考試來分析整體情況,這樣有重點復(fù)習(xí),相信同學(xué)們一定會抓住數(shù)學(xué),決勝數(shù)學(xué)!

關(guān)于"最后階段,真題的正確打開方式_備考經(jīng)驗_考研幫"15名研友在考研幫APP發(fā)表了觀點

掃我下載考研幫

考研幫地方站更多

你可能會關(guān)心:

來考研幫提升效率

× 關(guān)閉